搜索 | 会员  
  • 推荐系统在本质上是一个信息检索的系统。它和搜索最大的区别是,搜索是主动式的,根据关键词和引擎参数、搜索引擎召回、机器学习排序,决定给你看到的是哪些内容。而我们看到的推荐系统,在大多......
  • ApacheKafka发展至今,已经是一个很成熟的消息队列组件了,也是大数据生态圈中不可或缺的一员。ApacheKafka社区非常的活跃,通过社区成员不断的贡献代码和迭代项目,使得ApacheKafka功能越发丰......
  • 推荐架构大同小异,主要包含召回、排序、策略三部分。召回:通过各种业务抓手粗选出用户可能感兴趣的东西。排序:结合用户已有信息、场景信息、推荐内容信息,使用模型算法排序,满足核心业务目......
  • 对于音频与视频这种内容,即使在加速的情况下也需要一定的时间来听完、看完音频和视频内容才能够进一步理解它。如果采取人力处理这些问题会遇到困难,我们就可以借助于机器辅助人来进行处理。......
  • 从纸媒、电视传媒开始,内容产业搭载着互联网的发展快车,跨过了网络门户、论坛等形式,在移动互联网的普及下,终于迎来爆发式的发展。而随着内容产业的飞速发展,我们对内容的加工处理方式也逐......
  • OPPO作为手机厂商,基于Android定制了自己的ColorOS系统,当前日活跃用户超过2亿。围绕ColorOS,OPPO构建了很多互联网应用,比如应用商店、浏览器、信息流等。在运营这些互联网应用的过程中,OP......
  • Hive的后端存储是HDFS,它对大文件的处理是非常高效的,如果合理配置文件系统的块大小,NameNode可以支持很大的数据量。但是在数据仓库中,越是上层的表其汇总程度就越高,数据量也就越小。而且......
  • 为了训练模型,我们需要一种可降低模型损失的好方法。迭代方法是一种广泛用于降低损失的方法,而且使用起来简单有效。迭代学习可能会让您想到“HotandCold”这种寻找隐藏物品(如顶针)的儿童游......
  • 线性回归是一种找到最适合一组点的直线或超平面的方法。本模块会先直观介绍线性回归,为介绍线性回归的机器学习方法奠定基础。......
  • 什么是(监督式)机器学习?简单来说,它的定义如下:机器学习系统通过学习如何组合输入信息来对从未见过的数据做出有用的预测。下面我们来了解一下机器学习的基本术语。......
  • 本术语表中列出了一般的机器学习术语和TensorFlow专用术语的定义。......
  • 知识图谱是结构化的语义知识库,用于以符号形式描述物理世界中的概念及其相互关系。其基本组成单位是“实体-关系-实体”三元组。通过知识图谱,可以实现Web从网页链接向概念链接的转变。......
  • 在链接人与知识的路径中,知乎存在着大量的推荐场景。粗略统计,目前除了首页推荐之外,我们已存在着20多种推荐场景;并且在业务快速发展中,不断有新的推荐业务需求加入。......
  • 从数仓建设的角度思考,数据仓库需要依赖于稳定和规范的数据源,数据需要经过采集加工后才能真正被数仓所使用。推动数据同步服务的平台化,才有可能从源头规范数据的产出。数据同步服务不像数据......
  • 在大数据系统中,我们往往无法直接对在线系统中的数据直接进行检索和计算。在线系统所使用关系型数据库、缓存数据库存储数据的方式都非常不同,很多存储系统并不适合分析型(OLAP)的查询,也不......
相关主题
大家在关注
我们的推荐
最新的干货