搜索 | 会员  
你分得清机器学习和深度学习吗
来源: 51CTO   作者:网友  日期:2017-12-15  类别:大数据  主题:机器学习  编辑:素衣白裳
人工智能最近引起了非常多的关注,深度学习和机器学习作为人工智能实现的技术的得到了充分的关注,在计算机视觉和自然语言处理等领域产生了巨大的影响,深度学习是无人驾驶汽车的关键技术。

深度学习是什么?

在深度学习中,计算机模型学习直接从图像、文本或声音中执行分类任务。深度学习模式可以达到新的精确度,有时甚至超过人类的表现。大多数深度学习方法使用神经网络的架构,这也是深度学习模型通常被称为深度神经网络的原因。

所谓深通常是指神经网络中隐藏层的数量,传统的神经网络只包含2-3个隐藏层,而深度神经网络最多可以有150个。深度神经网络最受欢迎的类型之一是卷积神经网络(CNN或ConvNet),CNN通过输入数据来卷积学习特征,并通过2D卷积图层,使得这种架构非常适合处理2D数据。

以一张图片为例,一个训练有素的深度学习模型能够自动识别图片中的物体,尽管它以前从未见过这些精确的图片。在某些网站中识别上传的照片中特定的人物等就是深度学习在发挥功能,今天在深度学习中应用的很多技术已经在业界使用了十多年,已经比较成熟。

为什么深度学习近来人气大增?

最主要的原因是准确性,深度学习模式可以达到前所未有的精确度,有时甚至超过人类的表现。此外,还有另外两个因素使该技术得到了业界的关注:

  • 深度学习需要大量的标记数据。如,无人驾驶汽车的发展需要以数百万计的图像和数千小时的视频为基础,这些大量的标记数据现在已经可以轻松获得。

  • 深度学习需要大量的计算能力。高性能的GPU具有高效深度学习的并行架构,与集群或云计算结合使用时,开发团队可以将深度学习网络的培训时间从几周缩短到几个小时甚至更短。

机器学习和深度学习的差异

深度学习和机器学习都提供了训练模型和分类数据的方法,那么这两者到底有什么区别?

使用标准的机器学习的方法,我们需要手动选择图像的相关特征,以训练机器学习模型。然后,模型在对新对象进行分析和分类时引用这些特征。

通过深度学习的工作流程,可以从图像中自动提取相关功能。另外,深度学习是一种端到端的学习,网络被赋予原始数据和分类等任务,并且可以自动完成。

另一个关键的区别是深度学习算法与数据缩放,而浅层学习数据收敛。浅层学习指的是当用户向网络中添加更多示例和训练数据时,机器学习的方式能够在特定性能水平上达到平台级。

如果需要在深度学习和机器学习之间作出抉择,用户需要明确是否具有高性能的GPU和大量的标记数据。如果用户没有高性能GPU和标记数据,那么机器学习比深度学习更具优势。这是因为深度学习通常比较复杂,就图像而言可能需要几千张图才能获得可靠的结果。高性能的GPU能够帮助用户,在建模上花更少的时间来分析所有的图像。

如果用户选择机器学习,可以选择在多种不同的分类器上训练模型,也能知道哪些功能可以提取出最好的结果。此外,通过机器学习,我们可以灵活地选择多种方式的组合,使用不同的分类器和功能来查看哪种排列最适合数据。

所以,一般来说,深度学习的计算量更大,而机器学习技术通常更易于使用。

深度学习的实际应用

深度学习应用程序的应用涵盖了自动驾驶、医疗设备等行业。

  • 自动驾驶:汽车研究人员正在使用深度学习来自动检测停车标志和交通信号灯等物体,此外,深度学习也被用来检测行人,有助于减少事故。

  • 工业自动化:深度学习通过自动检测人员或物体何时处于机器不安全的距离,帮助改善重型机械周围的工人安全

  • Electronics:深度学习被用于自动化听觉和语音翻译

对于非专业人士来说,深度学习似乎无法实现,但是通过探索通用的深度学习工作流程,工程师和科学家现在可以快速、轻松地将深度学习应用到他们的应用程序中。

随着深度学习逐渐向业界渗透,我们将会看到在计算机视觉、自然语言处理和机器人等领域被认为是不可能的应用将会出现创新和进化。


德仔网尊重行业规范,每篇文章都注明有明确的作者和来源;德仔网的原创文章,请转载时务必注明文章作者和来源:德仔网;
头条那些事
大家在关注
广告那些事
我们的推荐
也许感兴趣的
干货
了解一下吧