搜索 | 会员  
  • 知识图谱是一个比较新的工具,它的主要作用还是在于分析关系,尤其是深度的关系。所以在业务上,首先要确保它的必要性,其实很多问题可以用非知识图谱的方式来解决。
  • 在互联网的排序业务中,比如搜索、推荐、广告等,AUC(AreaundertheCurveofROC)是一个非常常见的评估指标。
  • 知识图谱一直是研究的热点,东南大学漆桂林老师等发表了一篇关于中文知识图谱构建的综述论文,详细讲述了当前中文知识图谱的研究进展,是非常好的学习资料
  • 推荐系统在本质上是一个信息检索的系统。它和搜索最大的区别是,搜索是主动式的,根据关键词和引擎参数、搜索引擎召回、机器学习排序,决定给你看到的是哪些内容。而我们看到的推荐系统,在大多
  • 推荐架构大同小异,主要包含召回、排序、策略三部分。召回:通过各种业务抓手粗选出用户可能感兴趣的东西。排序:结合用户已有信息、场景信息、推荐内容信息,使用模型算法排序,满足核心业务目
  • 对于音频与视频这种内容,即使在加速的情况下也需要一定的时间来听完、看完音频和视频内容才能够进一步理解它。如果采取人力处理这些问题会遇到困难,我们就可以借助于机器辅助人来进行处理。
  • 为了训练模型,我们需要一种可降低模型损失的好方法。迭代方法是一种广泛用于降低损失的方法,而且使用起来简单有效。迭代学习可能会让您想到“HotandCold”这种寻找隐藏物品(如顶针)的儿童游
  • 线性回归是一种找到最适合一组点的直线或超平面的方法。本模块会先直观介绍线性回归,为介绍线性回归的机器学习方法奠定基础。
  • 什么是(监督式)机器学习?简单来说,它的定义如下:机器学习系统通过学习如何组合输入信息来对从未见过的数据做出有用的预测。下面我们来了解一下机器学习的基本术语。
  • 本术语表中列出了一般的机器学习术语和TensorFlow专用术语的定义。
  • 知识图谱是结构化的语义知识库,用于以符号形式描述物理世界中的概念及其相互关系。其基本组成单位是“实体-关系-实体”三元组。通过知识图谱,可以实现Web从网页链接向概念链接的转变。
  • 现在很多想从事于机器学习的朋友都存在很多困惑,主要是很多相关的书看不懂,尤其是数学部分,机器学习的基础是数学。数学并非是一个可选可不选的理论方法,而是不可或缺的支柱。对于机器学习算
  • 世间的一切对象都可化为节点;世间一切关系都可化为节点间的一条线;从而组成了如梦幻泡影的图。将来的环球必定是图的世界。
  • 目前机器学习技术正在对世界各地的企业产生重大影响,但很多机构依然对在何时、何处最优的使用机器学习感到困惑。为了成功的运用这门技术,企业首先要明确,哪些问题最适合应用机器学习,并确保
  • 数据科学家对优化算法和模型以进一步发掘数据价值的追求永无止境。在这个过程中他们不仅需要总结前人的经验教训,还需要有自己的理解与见地,虽然后者取决于人的灵动性,但是前者却是可以用语言
  • 地图
  • 本站
  • 我们
  • 服务
  • 版权
  • 联系
  • 回馈
  • 博客